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Abstract

The standard electroweak model is extended by means of a second Brout–
Englert–Higgs doublet. The symmetry breaking potential is chosen in such
a way that (i) the Lagrangian possesses a custodial symmetry, (ii) a static,
spherically symmetric ansatz of the bosonic fields consistently reduces the
Euler–Lagrange equations to a set of differential equations. The potential
involves, in particular, products of fields of the two doublets, with a
coupling constant λ3. Static, finite energy solutions of the classical equations
are constructed. The regular, non-trivial solutions with the lowest classical
energy can be of two types: sphalerons or bisphalerons, according to the
coupling constants. Special emphasis is put on the bifurcation between these
two types of solutions which is analyzed in the function of the different constants
of the model, namely of λ3.

PACS numbers: 11.10.Lm, 11.27.+d, 11.11.−g

1. Introduction

It has been known for a long time [1] that baryon and lepton numbers are not strictly conserved
in the standard model of electroweak interactions (see [2, 3] for reviews). Baryon number
violating processes [4] involve the crossing through an energy barrier separating topologically
inequivalent vacua of the underlying gauge theory. Remarkably, this energy barrier is high
but finite. It corresponds to a static, regular solution of the classical equations of motion: the
sphaleron [5]. The sphaleron was first constructed in the case θW = 0 (θW denotes the Weinberg
angle) where a consistent spherically symmetric ansatz [6] transforms the Euler–Lagrange
equations of the theory into differential equations. The Klinkhamer–Manton (KM) sphaleron
is, however, not the minimal energy barrier when the mass of the Brout–Englert–Higgs boson
(BEH boson) exceeds some critical values. Indeed, for MH � MW [7–9] another branch
of solutions exists which bifurcates from the sphaleron branch for MH ≈ 12MW . The new
solutions have a lower energy than the sphaleron and since they appeared as pairs connected
to each other by the parity operator, they were called bishpalerons. Nowadays the possibility
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that bisphalerons constitute the energy barrier allowing for baryon number violating process
is ruled out in the minimal (one doublet) electroweak model by the perturbative upper limit of
the BEH field and the sphaleron–bisphaleron bifurcation remains a curiosity of the classical
equations.

However, several extensions of the minimal Weinberg–Salam model are currently under
investigation as alternative candidates for the description of electroweak interactions (see e.g.
[10, 11]). Among these various extensions, those incorporating more than one multiplet of
BEH bosons play a central role. For instance, the minimal supersymmetric electroweak model,
considered for many theoretical reasons, involves two BEH doublets. These extended models
lead generally to involved classical equations where the generalizations of sphalerons and
bisphalerons can be looked for, as well as eventual other types of solutions of soliton type.
In particular, it is challenging to study the domain of parameters for which bisphalerons exist
and to see if this domain intersects with the domain of physically acceptable parameters. This
question was addressed before in [12, 13]. The potential used in these papers does not involve
a direct coupling between the doublets. Here we will extend the potential chosen in [12, 13]
by a supplementary interaction between the two BEH doublets. The influence of the new term
on the sphaleron–bisphaleron bifuraction will be studied in details.

To be complete let us mention that the classical equations of the two-doublets-extended
standard model were also investigated in [14, 15] with even more general potentials but, to our
knowledge, these authors did not put the emphasis on the bifurcation between the two types
of lowest energy solutions.

In section 2, we present the model, the notations and the physical parameters. The
spherically symmetric ansatz, the equations and boundary conditions are given in section 3;
the numerical solutions are then discussed in section 4.

2. The model

The model that we consider in this paper is an SU(2) Yang–Mills theory coupled to two
doublets of scalar fields. The Lagrangian density is given by

L = − 1
4Fa

μνF
μν,a + (Dμ�(1))

†(Dμ�(1)) + (Dμ�(2))
†(Dμ�(2)) − V (�(1), �(2)), (1)

where �(1), �(2) denote the two BEH doublets and the standard definitions are used for the
covariant derivative and gauge-field strengths:

Fa
μν = ∂μV a

ν − ∂νV
a
μ + gεabcV b

μV c
ν (2)

Dμ� =
(

∂μ − i

2
gτaV a

μ

)
� (3)

where τa denotes the Pauli matrices and g the gauge coupling. With respect to the electroweak
model, the limit θW = 0, i.e. g′ = 0, is used throughout the paper.

The most general gauge invariant potential constructed with two BEH doublets is presented
namely in [11], it depends on nine constants. Here we consider the family of potentials of the
form
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depending on five parameters. The term directly coupling the two doublets is parametrized
by the constant λ3. One of the main properties of the potential (4) resides in the fact that it
imposes a symmetry breaking mechanism to each of the BEH doublets. The case λ3 = 0 is
studied at length in [12, 13].

The Lagrangian (1) is invariant under SU(2) gauge transformations but it further possesses
a larger global symmetry under SU(2) × SU(2) × SU(2). In fact, the part of the Lagrangian
(1) involving the scalar fields can be written in terms of 2 × 2 matrices defined by

Ma ≡
(

φ∗
0 φ+

−φ∗
+ φ0

)
a

with �(a) ≡
(

φ+

φ0

)
a

, a = 1, 2. (5)

When written in terms of the matrices M1 and M2, the Lagrangian (1) becomes manifestly
invariant under the transformation

V ′
μ = AVμA†, M ′

1 = AM1B, M ′
2 = AM2C (6)

with A,B,C ∈ SU(2); this is the custodial symmetry. The double symmetry breaking
mechanism imposed by the potential (4) leads to a mass MW for two of the three gauge vector
bosons and, namely, to two neutral BEH particles with masses Mh,MH . In terms of the
parameters of the Lagrangian, these masses are given by [11, 16]

MW = g

2

√
v2

1 + v2
2, M2

H,h = 1

2
[A1 + A2 ±

√
(A1 − A2)2 + 4B2] (7)

with

A1 = 2v2
1(λ1 + λ3), A2 = 2v2

2(λ2 + λ3), B = 2λ3v1v2. (8)

For later convenience we also define

tan β = v2

v1
, ρH,h = MH,h

MW

, εp = 4
λp

g2
, p = 1, 2, 3. (9)

Note that the quantities ρ1,2 used in [13] are related to the mass ratio ρH,h by ρH =
max{ρ1, ρ2}, ρh = min{ρ1, ρ2}. For physical reasons, we consider only v1 � 0, v2 � 0
so that 0 � β � π/2. Interestingly, the parameter ε3 can be negative but cannot take arbitrary
values. The following relations are useful to determine the physical region:

ε1 cos2 β + ε2 sin2 β = 1
2

(
ρ2

H + ρ2
h

) − ε3,
(10)

ε1 cos2 β − ε2 sin2 β = 1
2

√(
ρ2

H − ρ2
h

)2 − 4ε2
3 sin2(2β) − ε3 cos(2β).

The physical domain is then determined by the conditions

ρ2
h − ρ2

H

2 sin(2β)
� ε3 � ρ2

H − ρ2
h

2 sin(2β)
, 0 � ρ2

h � ρ2
H (11)

The physical domains are presented in figure 1 for the case ρh = 3 for β = π/4 and β = 3π/8.

3. Spherical symmetry

In order to construct classical solutions of the Lagrangian (1), we perform a spherically
symmetric ansatz for the fields. With the notations of [17], it reads as

V a
0 = 0

V a
i = 1 − fA(r)

gr
εaij r̂j +

fB(r)

gr
(δia − r̂i r̂a) +

fC(r)

gr
r̂i r̂a

3
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Figure 1. The physical domain corresponding to the case ρh = 3.0, β = π/4 (resp. β = 3π/8)
are represented by the solid (resp. dashed) line in the ρH , ε3 plane. The line with bullets (resp.
triangle) represents the sphaleron–bisphaleron bifurcation.

φ(1) = v1√
2

[H(r) + i(r̂.	σ)K(r)]

(
0
1

)

φ(2) = v1√
2

[H̃ (r) + i(r̂.	σ)K̃(r)]

(
0
1

)
, (12)

where fA, fB, fC,H,K, H̃ , K̃ are real functions of the radial coordinate r =
√

x2 + y2 + z2.
It can be shown that the above ansatz transforms the Euler–Lagrange equations into a set of
coupled differential equations. The custodial symmetry has been used to set the two doublets
parallel to each other asymptotically. The condition V0 = 0 results from a gauge fixing. In fact,
the spherically symmetric ansatz leaves a residual gauge symmetry which can be exploited to
eliminate one of the seven radial functions [7, 8, 17]. Here we will adopt the radial gauge
xjV

a
j = 0 which implies fC = 0.
The classical energy E of a static, spherically-symmetric configuration can be computed

by substituting the fields (12) into the energy functional. After some algebraic manipulations,
the quantity E can be written in the form:

E = MW

αW

Ẽ, Ẽ =
∫ ∞

0
E dx. (13)

Here, αW ≡ g2

4π
and the effective one-dimensional energy density E reads

E = (f ′
A)2 + (f ′

B)2 +
1

2x2

(
f 2

A + f 2
B − 1

)2

+ cos2 β[(H(fA − 1) + KfB)2 + (K(fA + 1) − HfB)2 + 2x2((H ′)2 + (K ′)2)

+ (H̃ (fA − 1) + K̃fB)2 + (K̃(fA + 1) − H̃fB)2 + 2x2((H̃ ′)2 + (K̃ ′)2)]

+ cos4 β[ε1x
2(H 2 + K2 − 1)2 + ε2x

2(H̃ 2 + K̃2 − tan2 β)2

+ ε3x
2(H 2 + K2 − 1)(H̃ 2 + K̃2 − tan2 β)]. (14)
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The dimensionless variable x = MWr is used and the prime denotes the derivative with respect
to x. The equations to solve can then be obtained by varying the functional (14) with respect
to the six radial functions. Remark that in the case v2 = 0, λ2 = λ3 = 0 the equations for
H̃ , K̃ decouple and these functions can be set consistently to zero; the remaining equations
then correspond to the case of one doublet.

The conditions of regularity of the solutions at the origin imposes in particular f 2
A + f 2

B = 1
at x = 0, the custodial symmetry (6) can then be exploited to fix the following values of the
radial fields at the origin:

fA(0) = 1, fB(0) = 0, K(0) = 0,
(15)

K̃(0) = 0, H ′(0) = 0, H̃ ′(0) = 0.

On the other hand, the condition of finiteness of the classical energy imposes the following
asymptotic forms:

(fA, fB)x=∞ = (cos 2πq, sin 2πq)

(H,K)x=∞ = (cos π(q − k), sin π(q − k)) (16)

(H̃ , K̃)x=∞ = tan β(cos πq, sin πq)

for some real number q and for k equal to zero or one. For later use we define q ≡ 1/2 + δ.

4. Discussion of the solutions

In order to make the following discussion self-contained, we first summarize the main features
of the solutions available in the case of the one doublet-standard-model (1DSM), i.e. in the
case v2 = λ2 = λ3 = 0, leading to H̃ = K̃ = 0.

4.1. 1DSM

There exists at least one solution for all values of ρ1: the Klinkhamer–Manton (KM) sphaleron
[6]. Note that ρH ≡ ρ1 in this case. For this solution one can further set fB = H = 0 by an
appropriate choice of the custodial symmetry; the classical energy increases monotonically as
a function of ρ1:

Ẽs(ρ1 = 0) ≈ 3.04, Ẽs(ρ1 = ∞) ≈ 5.41. (17)

The KM sphaleron is always unstable but the number of its directions of instability increases
when ρ increases [8, 18]. At ρ ≈ 12.04 a couple of new solutions, the bisphalerons, bifurcate
from the sphaleron. The two bisphalerons (which transform into each other by parity) have
the same energy and their energy is lower than that of the KM sphaleron

Ẽbs(ρ1 = 12.04) = Ẽs(ρ1 = 12.04) ≈ 4.86, Ẽbs(ρ1 = ∞) ≈ 5.07. (18)

The parameter q defined in (16) is equal to 1/2 for sphalerons. For bisphalerons, the parameter
q deviates slightly from q = 1/2. Defining δ ≡ q−1/2 it is known [7, 8] that δ varies from zero
(at the bifurcation point) to δ = ±0.06 (at ρ1 = ∞). The two bisphalerons are distinguished
by the sign of δ.

4.2. 2DSM, case ε3 = 0

Solutions of the Lagrangian (1) with λ3 = 0 were first constructed in [12] and reconsidered
in [13] where the emphasis was put on the sphaleron–bisphaleron bifurcation. As in 1DSM,
sphalerons have fB = H = H̃ = 0 and seem to exist for all values of the parameters of the

5
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Figure 2. The evolution of the parameters δ, K1 ≡ K(0), K2 ≡ K̃(0) is shown as function of ρh

for ρH = 3ρh.

potential. The angle parameter q defined in (15) corresponds to q = 1/2, irrespectively of the
coupling constants of the potential.

By contrast, the six radial functions corresponding to the bisphaleron are non-trivial and
fulfil the boundary conditions (16). The parameter q depends on the various coupling constants
but remains close to 1/2 for all choices (e.g. δ = 0.036 for ρ1 = 14, ρ2 = 1, β = 0.2).

The results of [13] show the existence of a smooth surface in the ρ1, ρ2, β-parameter
space inside of which only sphaleron solutions exist while sphalerons and bisphalerons coexist
outside, the bifurcation taking place on the surface. The critical surface can be determined only
numerically by studying a few parameters characterizing the bisphaleron solutions, namely the
values δ,K(0), K̃(0), as functions of β, ε1, ε2. Varying one of these parameters and fixing the
other two, a critical point is determined when δ,K(0), K̃(0) approach zero. This is illustrated
in figure 2 for β = π/4 and ρH = 3ρh. The critical point then corresponds to ρH ≈ 2.397.

It is worth noticing that bisphaleron solutions with δ = 0 but K(x) �= 0, K̃(x) �= 0 also
occur outside the critical surface. This is illustrated in figure 3 where we set ρ2

H + ρ2
h = 9 and

vary � ≡ arctan(ρH/ρh). Clearly, δ goes to zero in the limit � → π/4. Figures 2 and 3 are
complementary to those presented in [12, 13].

One important feature of the bisphaleron solutions in the 2DSM is that the angle
φ̃ = arctan(K̃/H̃ ) increases monotonically from 0 (for x = 0) to πq (for x = ∞) while
φ = arctan(K/H) decreases from 0 to π(q − 1); that is to say that these solutions of lowest
energy have k = 1 in (16). In fact, non-trivial solutions obeying (16) with k = 0 were
constructed in [12] but since they have a higher energy, they are likely to be less interesting as
far as the energy barrier is concerned.

4.3. 2DSM, case ε3 �= 0

The construction of solutions in the domain ρh, ρH , β, ε3 and the study of the critical
hypersurface in this four-parameter space is a vast task. For definiteness, we have limited our
investigations to two values of β, namely β = π/4 and β = 3π/8.

6
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Figure 3. The evolution of the parameters δ, K1 ≡ K(0), K2 ≡ K̃(0) is shown as function of
ρH /ρh for ρ2

H + ρ2
h = 9.

We first discuss the results for β = π/4, i.e. v1 = v2. Here are a few ‘points’ on the
bifurcation line corresponding to β = π/4 and ε3 = 0:

(ρh, ρH ) : (3.0, 7.08), (5.0, 6.08), (5.585, 5.585), (7.6, 10). (19)

Our main concern is to determine how this domain of the ρh, ρH plane evolves with ε3. In the
following, we further restrict to the case ρh = 3.0. The result is illustrated by figure 1, where
the physical domain is delimited by the solid lines. The sphaleron–bisphaleron bifurcation
line is represented by the solid line with bullets and the domains where sphalerons only exist
is indicated, as well as the domain where sphalerons and bisphalerons coexist. The critical
line separating these two regions clearly exhibits two different behaviors on the domain of
parameters considered: for 6.2 � ρH � 8, the critical line is roughly a function increasing
linearly with the coupling constant ε3. As a consequence, the critical line intersects the lower
line delimiting the physical domain, for instance at ρH ≈ 6.22, ε3 ≈ −15.0. Clearly, for the
negative values of ε3, the minimal mass of MH (with all other parameters fixed) for which
bisphalerons exist is lowered by the presence of a direct interaction between the BEH fields.
For 8.0 < ρH < 10.0 the critical line develops a plateau at ε3 ≈ 10.0 and ρH,cr depends only
weakly of ε3. For some unknown reason, the numerical analysis becomes very difficult when
the critical line approaches the limit of the physical domain.

The behavior of the critical line turns out to be completely different for β = 3π/8, in
this case, the limit of the physical domain is indicated by the dotted lines and the critical line
by the dotted line with the triangles. In contrast to the case β = π/4 we see here that the
critical value ρH,cr decreases roughly linearly with ε3. For ε3 > 0 the barrier turns out to be
a bisphaleron for lower values of ρH than in the ε3 = 0 case. Here, the critical line seems to
cross the two lines determining the physical domain where it naturally terminates.

We further studied the critical phenomenon for 3π/8 < β < π/4 and observed a smooth
evolution of the critical lines displayed in figure 1.
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5. Conclusion

The Lagrangian considered in this paper leads to a tricky system of six differential equations
with boundary conditions and depending effectively on four parameters. Many types of non-
trivial solutions can be constructed numerically [12] but, at the moment, those with lowest
energy are identified as the sphaleron or the bisphaleron, depending on the different coupling
constants. The determination of the critical hypersurface of bifurcation in the space of
parameters constitutes a huge task which can be studied only numerically. The problem is for
a large part academic; however at the moment, the theoretical limits on the BEH-boson masses
obtained in the two-doublets extension of the electroweak model, do not yet exclude that the
energy barrier between topologically different vacua could be determined by a bisphaleron.
A few years ago, it was already pointed out that the minimal mass of the neutral BEH fields
for the barrier to be of the bisphaleron type is considerably lower in the two-doublets model
(without direct interaction of the doublets in the potential) than in the minimal, one-doublet
model. The calculations reported here suggest that, if a custodially-invariant coupling term
is supplemented to the potential, the critical mass ρH,cr varies roughly linearly with the new
coupling constant ε3. The supplementary coupling constant can of course not be arbitrarily
large, but on the physical domain, the critical value ρH,cr again decreases while all other
masses are kept fixed. Of course, many other terms can be added to the potential [11]; namely
the terms leading to charged BEH fields. It could be that bisphaleron solutions exist for still
lower masses of the different scalar particles emerging from the BEH mechanism.
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